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Abstract

This paper analyses the reluctance of a significant part of the population

to get vaccinated against SARS-CoV-2. We construct a two-period model

wherein ex ante identical individuals make voluntary, uncoordinated deci-

sions about social distancing in both periods and vaccination in the second.

These decisions affect the prevalence of infection in both periods. The vac-

cination decision is determined by the individual’s immune status from the

first period and the interplay between the prevalence of infection and indi-

viduals’conjectures about the number choosing vaccination in the second.

The analysis covers various scenarios: (i) the existence or otherwise of a

threshold at which transmission of infection ceases, (ii) imperfect immunity,

and (iii) a sub-population of Covid non-believers. There are diverse sub-

game perfect Nash equilibria. If zero transmission is not attained in the

first period, it will not ensue through vaccination in the second. There can

be a mixed strategy configuration wherein some of those who escaped infec-

tion in the first period choose vaccination in the second, or even a wholesale

rejection of vaccination.



1 Introduction

There have been great efforts worldwide to roll out SARS-CoV-2 vaccination

programmes. The vaccines’effi cacies vary quite substantially, and their lev-

els seem to be somewhat lower against the delta and, most recently, omicron

strains of the virus; but all approved vaccines greatly reduce the chances of

hospitalization and death. On the scientific evidence, the probability of

adverse side effects is low, albeit these are variable.

What is perhaps surprising is the declared reluctance of a significant part

of the population to get vaccinated. Figure 1 depicts the disparate attitudes

to vaccination across 15 OECD countries, based on survey data.1 On De-

cember 15, 2021, the declared refusal rate varied from 7% to 25%. According

to the UK’s Offi ce of National Statistics (2021), the most prominent reason

given for refusing vaccination is the anticipated side effects. Yet Graeber et

al. (2021) compile evidence from Germany and conclude that only about

70% of the population would opt for a jab, even if there were no such adverse

effects. However the latter are assessed, an individual’s decision is arguably

driven by his or her perception of the likely costs and benefits. The former

comprise the certain cost of the treatment itself and the expected costs of

its side effects; the benefit stems from the prospective degree of conferred

immunity.

1The data were collected by YouGov in partnership with the Institute of Global Health

Innovation (IGHI) at Imperial College, London. The research covered about 29 countries,

interviewing about 21000 people each week. These data are compiled by Our World

in Data, available in https://ourworldindata.org/grapher/covid-vaccine-willingness-and-

people-vaccinated-by-month&tab=table&country=~FRA
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Figure 1: Percent of people unvaccinated and unwilling to get a jab

Declaring an intention to act in a survey is not necessarily the same thing

as taking or declining the action itself when the opportunity arises. The said

offi cial survey in the UK was conducted in February and March, 2021, just

two to three months after the roll out had started. Early in March, 2021,

about one third of the population had received at least one jab (Our World

in Data, 2022). At this time of writing, 74.2% are fully vaccinated and 58.7%

have had at least one booster (ibid.). The survey evidence for Germany in

Graeber et al. (2021) was published on May 10, 2021. At that time, about

one third of the population had received at least one jab. At this time of

writing, 77.5% are fully vaccinated —clearly exceeding the declared 70% —

and 65.3% have had at least one booster (ibid.).

The emphasis on attitudes and intentions rather than actual uptake is in-

deed a rather striking feature of the literature on ‘vaccine hesitancy’related

to SARS-CoV-2. This is partly attributable to the lag between roll out and

attaining programme maturity in developed countries, whereas roll out itself
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has been tardy and stuttering in many low- and middle-income countries.

Solis Arce et al. (2021), for example, report findings on such hesitancy from

studies of 15 countries, the Russian Federation and the U.S. being the sole

developed ones. The authors contrast the ‘acceptance rates’of 30.4% and

64.6%, respectively, in the latter with an average of 80% among the other 13

countries. Yet according to Our World in Data (2022), the current full vac-

cination rates for Russia and the U.S. are 51.1% and 67.0%, respectively.2

That for Pakistan is 55.7%, whose ‘acceptance rate’of 66.5% was the lowest

among the other 13 countries. Whether the latter shortfall is attributable

to the failings of Pakistan’s health system rather than a failure of respon-

dents’declared intentions to match their actions is an open question. Other

contributions that deal with reported hesitancy include Tran (2021) and Vu

(2021) for the U.S. and Unterschultz et al. (2021) for Canada. Vu’s study

of county-level data is particularly interesting; for he estimates a variety of

specifications with both measures of hesitancy and actual vaccination rates

(as of September 21, 2021, when the national rate was 57%) as the regres-

sand.3 What is termed ‘rugged individualism’turns out to be a statistically

significant obstacle to vaccination in all specifications.

With this general caveat about declared intentions and actual choices,

Table 1 reports the correlation between the number of confirmed cases per

100,000 population and the unwillingness to vaccinate for the 15 OECD

2The rates for other, selected O.E.C.D. countries are: France, 78.3%; Italy, 80.5%;

Japan, 81.0%; South Korea, 86.1%; Spain, 85.5%.
3 In a recent paper, Daral and Shashidhara (2022) use data from a facebook survey

to probe into the reasons for vaccine hesitancy in India. They identify a range of fac-

tors, which include insuffi cient knowledge, doubts about the effi cacy of vaccines, concerns

about side effects, the desire to wait and watch, an anti-vaccination attitude based on

misinformation, and scientifically unfounded beliefs.
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countries. What is surprising is a significant positive correlation: in coun-

tries where there are proportionally more cases, people are less willing to

get vaccinated. This positive correlation holds for various measures of Covid

cases, including fatalities. On the other hand, there is also evidence that,

well before vaccines became available, people in Western Europe and the US

practised social distancing more stringently in order to ward off infection

(Maloney and Taskin, 2020). This suggests that the vaccination decision is

complicated by the existence of an alternative, independent course of action:

agents can use social distancing to lower the chances of infection, an action

that also involves externalities. Individuals may form expectations about

herd immunity arising in the future, and so choose current social distancing

in the light of the contingent distancing and vaccination decisions in the

next period. Distancing and vaccination could, therefore, be inter-temporal

and strategic in nature.

Table 1: Correlations of vaccine resistance with cases and potential cost of

infection

Cumulative cases Deaths/million Excess deaths Serious critical cases

0.54

(0.03)

0.56

(0.02)

0.52

(0.04)

0.55

(0.03)

Source: Our World in Data, Economist (December, 2021), Worldometer

Certain strategic elements in Covid protection are studied in the litera-

ture. Ng (2021) develops a model of mask-wearing in an environment where

non-cooperative agents free ride, taking into consideration that a mask ben-

efits others more than it protects the wearer. A similar free-riding issue

arises in Basu, Bell and Edwards (2020) in connection with social distanc-
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ing. Talamas and Vohra (2020) build a network model where agents choose

their partners strategically. They conclude that a partially effective vac-

cine can harm everyone because it increases the chance of risky interactions.

We do not do analyse such personal networking. Our focus is primarily on

individual choice of vaccination in the presence of strategic complementarity

of anonymous social distancing and jab decisions. However, we examine the

case wherein vaccination may be partially effective, and in such a scenario of

imperfect immunity, we analyze whether there could be a Nash equilibrium

wherein some agents choose vaccination.

While there are various contributions on endogenous social distancing,4

to the best of our knowledge, the strategic elements in vaccination are rela-

tively unexplored in the Covid literature. We develop a simple two-period

model to explore such strategic interaction among identical, risk-neutral

agents.

There are various subgame perfect Nash equilibria, with symmetric be-

haviour, fully or among groups, depending on the costs of distancing, the

expected costs of infection and the expected costs of vaccination. The latter

can be so high as to induce a wholesale rejection of vaccination, with cor-

respondingly extensive social distancing, in the second period, though this

outcome seems unlikely in practice.

Much more likely is the possibility that the level of natural immunity

yielded by infections in the first period is such that, when combined with

conjectures about the number of susceptible individuals who elect to get a

4Theoretical studies include Toxvaerd (2020), Eichenbaum et al. (2020), Farboodi et

al. (2021), and Getachew (2020); the latter uses a SIR model in a DSGE framework.

There is empirical evidence that social distancing is endogenous: see, for example, Chudik

et al. (2020) on China.
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jab in the second period, all susceptible individuals are indifferent between a

jab and taking their chances with optimal social distancing, conditional on

the resulting level of immunity in the whole population. A mixed strategy

equilibrium can therefore result when a particular fraction of the susceptible

population chooses vaccination. That fraction, which is a self-fulfilling ex-

pectation in equilibrium, depends crucially on the fraction of the population

infected in period 1, which arises from social distancing decisions in period

1. The latter depend, in turn, on the expected cost of infection and that of

vaccination; for by conferring full or partial immunity, infection in period 1

will affect the attractiveness of vaccination in period 2. Expectations about

the extent of vaccination also depend on the social distancing decisions in

period 2 of those infected in period 1, and of those lacking any degree of

acquired immunity, as well as the expected costs of infection in period 2.

We analyse two scenarios. The first, which serves as a benchmark, has

two salient features. First, both previously infected and vaccinated people

are assumed to be immune to symptomatic infection in period 2, and thus

do not practise social distancing in that period, although they could still

infect others. Second, if the number of such individuals reaches a certain

threshold, transmission ceases and the rest of the population are no longer

in danger of infection in period 2. In what follows, we call this the zero

transmission threshold (or ZTT). It is important to note that this threshold

is not the so-called herd immunity threshold (or HIT), where the widely

used term ‘herd immunity’has a variety of meanings (Fine et al., 2011).

In their study of Spain, Garcia-Garcia et al. (2022) define the HIT ‘as

the minimum proportion of the immune population that will produce a

monotonic decrease of new infections.’ In the simplest model, the HIT

equals 1 − 1/R0, where the basic reproduction number R0 is the number
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of other individuals each infected person goes on to infect in a population

wholly comprised of susceptibles. If the effective reproduction rate, Re, falls

below 1 and remains so, transmission will eventually peter out. Yet there

may be numerous new infections in this phase: when HIT = 0.9, 99.6% of

the population are ultimately infected (ibid.). For the ancestral variant of

the virus, the authors’ estimates of HIT range from 28.1 to 67.1%; those

for the emerging delta variant in 2021 range from 75.1 to 88.8%. With the

omicron variant to follow, the corresponding ZTT may well exceed 1.5

In the first scenario, the value of the ZTT is assumed, perhaps opti-

mistically, to be less than 1. Wholesale rejection of vaccination can be an

equilibrium, but the ZTT is never reached in equilibrium through voluntary

vaccination. This finding leaves the possibility of a mixed strategy equi-

librium wherein ZTT is not reached. The key results are in keeping with

intuition. Higher expected costs of infection reduce the pool of infected peo-

ple via stronger precautionary social distancing in period 16 and so induce

a larger proportion of the population to get vaccinated. On the other hand,

higher expected costs of vaccination depress social distancing in period 1; for

by increasing their chances of infection, individuals improve their chances

of avoiding any need to distance or get vaccinated in period 2. There is a

data-congruent positive relationship between prevalence and the refusal to

get vaccinated.7

5This is to be interpreted as implying that newly arrived, susceptible individuals would

have a strictly positive probability of getting infected.
6This is consistent with the empirical finding of Maloney and Taskin (2020) that in

the absence of an effi cacious vaccine, people distance more when the number of cases is

higher.
7The case of no herd immunity is a special case, where this threshold level is set at

100% of the population.
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In the second, more realistic setting, immunity to symptomatic infection

in period 2, whether acquired naturally or through vaccination, is imper-

fect. All individuals have a strictly positive probability of suffering such an

infection in period 2, so that the ZTT exceeds 1. This case is particularly

important given the emergence of new variants of the virus, which points

to SARS-CoV-2 becoming endemic, much like influenza. Social distancing

behaviour in this setting is similar to that in the first, except that all in-

dividuals, regardless of their immune status, respond to higher expected

costs of infection and vaccination. Quite counter-intuitively, wholly suscep-

tible people may find vaccination more attractive as the associated expected

costs rise, because the alternative strategy of simply practising greater social

distancing runs into more steeply rising costs at the margin.

Finally, we analyse the effect of the existence of Covid non-believers

on the social distancing and vaccination decisions of rational agents. The

presence of a group of such non-believers, who practise no social distancing,

induces rational agents to distance more and thus lowers infections in that

group. Yet this effect is outweighed by the high rate of infection among the

non-believers; so that the size of the whole pool of those infected increases

with the number of non-believers.

The paper is organized as follows. Section 2 begins by describing the

basic setting and the model’s structure. The argument then proceeds by

backward induction: period 2 in Section 2.1 and period 1 in Section 2.2. The

approach to the limit ZTT = 1 is analysed in Section 2.3. An illustrative

numerical analysis follows in Section 2.4. Imperfect immunity is treated in

Section 3. Non-believers are introduced into the basic setting in Section 4.

The main findings are drawn together in Section 5.
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2 The Model

At the start of period 1, a population lacking any immunity consists of a

continuum of identical, risk-neutral individuals represented by [0, 1]. In-

fection is never fatal.8 In each period, individuals choose safety measures,

which include social distancing and the wearing of masks, taking the choices

of other individuals as given. Hereinafter, we call these various measures

‘social distancing’. A vaccine will become available at the start of period 2,

but its side effects remain uncertain. Those who are susceptible to infection

decide whether to get vaccinated.

Individuals are endowed with ω units of a composite good in both peri-

ods. Individual i’s private cost of social distancing in the measure xit is given

by the increasing, strictly convex, twice-differentiable function c(xit), where

c(0) = c′(0) = 0. Infection, if it occurs, inflicts an expected cost of ξ1, with

outcomes that range from few or no symptoms to a stay in an ICU. Those

who get infected in period 1 are fully immune in period 2. Denote the set of

all such seropositive individuals by S1, and their share of the population by

n1, which the authorities report at the end of period 1. All individuals have

access to free testing at the end of period 1, which offers them a decisive

incentive to establish their immune status at the point of deciding about

vaccination. Being immune, all individuals in S1 decline vaccination. Sus-

ceptible individuals who choose vaccination also acquire full immunity.9 All

susceptible individuals at the start of period 2 have sharp priors concerning

8Deaths in the first period necessarily result in fewer individuals in the second. In fact,

the case mortality rate is low, which is not to diminish the tragedies of individual deaths.
9Block’s assessment (2021) of the evidence is that the immunity conferred by infection

is not inferior to vaccination.
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the fraction n2 ∈ [0, 1− n1] who decide to get a jab.10 Since they are iden-

tical ex ante, their priors are identical. Let all of them believe that n2 = ne2

with probability 1; these vaccinated individuals comprise the set S2. Al-

though they would suffer no symptoms, all immune individuals can still get

infected in period 2 and are then fully infectious.11 Their social distancing

behaviour in period 2, therefore, affects the probability that members of the

susceptible, but unvaccinated group, S3, will get infected.

Index all individuals at the start of period 2 as follows: if j ∈ S1, then

j ∈ (1 − n1, 1]; if j ∈ S2, then j ∈ (1 − n1 − n2, 1 − n1]; otherwise, j is

susceptible throughout period 2, with j ∈ [0, 1 − n1 − n2]. The distancing

profile is {xj2}j=1j=0, the aggregate social distance is X2 =
∫ 1
0 xj2dj.

The argument proceeds by backward induction. The timing of decisions

is as follows. At the start of period 1, each agent forms beliefs about others’

distancing decisions in period 1 and the number who will get a jab in period

2. Each individual then chooses some measure of distancing. At the end of

period 1, all agents learn their immune status. In period 2, those infected

in period 1 (confirmed by free testing) reject both distancing and a jab. In

the light of n1, those who were not infected choose between (i) no jab and

taking a chance by distancing and (ii) getting a jab and not distancing.

2.1 Period 2

If n1 ≥ n (< 1), then distancing decisions in period alone 1 yield zero trans-

mission in period 2, where n denotes the ZTT value. Those who escaped

infection in period 1 need have no fears in period 2 and so decline to get vac-

cinated. With no risk of infection, no one distances in period 2. It remains

10For a vigorous argument that rational actors must have sharp priors, see Elga (2010).
11The delta and omicrons variant may well have this property.
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only to establish under what conditions n arises from distancing decisions

in period 1, a task that is taken up in Section 2.2.

Suppose, on the contrary, that n is not attained in period 1. All indi-

viduals who escaped infection in period 1 must decide whether to get a jab.

If i in this group decides in favour, she obtains the payoff ω − ξ2, where ξ2
is the expected cost of vaccination and assumed to be positive.

If i decides against vaccination, she must choose how much to distance.

Let the probability of infection be

pi2 = f(xi2) · g(X2, n1 + n2, n) if n1 + n2 < n; otherwise, pi2 = 0, (1)

where f is a decreasing, strictly convex and twice-differentiable function,

with f(0) = 1 and limxit→∞ f = 0. Let g be decreasing and continuously

differentiable in X2 and (n1 + n2), with g(0, 0, n) = 1 and g(0, n, n) = 0.

Thus, if no one is immune and no one distances, then all get infected. If

n1+n2 < n, then given X2, i can lower her chances of infection by distancing

more; and given any xi2 > 0, pi2 goes to zero as n1 + n2 approaches n.

The arguments of the function g are features of the environment that

influence the effectiveness of i’s distancing decision. First, as the aggregate

X2 falls, the environment becomes more hazardous for those lacking immu-

nity, and so increases the probability that they will get infected. Second,

and working in the opposite direction, is the fact that, given X2, as the

number of immune individuals (n1+n2) rises, the state of zero transmission

is approached more closely, thus lowering that probability.12 Once n1 + n2

hits the threshold n, the probability of infection becomes zero.
12For given any such pool size, how much they decide, in aggregate, to distance certainly

weighs in i’s chances of infection. Yet that aggregate depends on both the numbers who

can infect i and what they are doing; and these two factors are not perfect substitutes.

Thus, the function g also has the argument n1 + n2.
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The first question is, if n is not attained in period 1, can it ensue in

period 2? We use backward induction to answer this question. Conjectured

zero transmission at date 2 means n1+ne2 ≥ n. If, at the start of period 2, i

conjectures that at least n will be attained, she will decline both vaccination

and any distancing (xi2 = 0), and so obtain ω by free riding. Since agents are

identical, everyone not infected in period 1 thinks this way and declines a jab.

This wholesale rejection of vaccination implies n2 = 0, which contradicts

n1 + n
e
2 ≥ n. We thus have the following proposition.

Proposition 1 If, under the above assumptions, distancing decisions in

period 1 do not yield zero transmission at date 2, then that state cannot

arise as a Nash equilibrium from voluntary vaccination in period 2.

When n is not thus attained, individuals know that n2 ∈ [0, n − n1).

Suppose individual i declines vaccination. She minimises her expected costs

by choice of xi2. The associated first-order condition (hereinafter f.o.c.) is

f ′(xi2) · g · ξ1 + c′(xi2) = 0. (2)

Since both f and c are strictly convex, her optimal choice, x0i2, is positive

and unique for any given X2 and n1 + ne2. In a symmetric configuration,

xj2 = x0i2 ∀j ∈ S3 and X2 = (1− n1 − ne2)xj2, so that xj2 satisfies

f ′(xj2) · g[(1− n1 − ne2)xj2, n1 + ne2, n] · ξ1 + c′(xj2) = 0 ∀j ∈ S3. (3)

Denote its value by x02(n1, n
e
2, n, ξ1), which is positive and unique (see Ap-

pendix 1, proposition 4). It follows from (1), (2) and (3) that the expected

payoff for all j ∈ S3 is

ω − p2(x02)ξ1 − c(x02) = ω − c(x02)− f(x02)c′(x02)/f ′(x02), 13

13The r.h.s. can be written in a form with elasticities: ω − c(x02)
(
1 +

ηcx(x
0
2)

η
f
x(x

0
2)

)
, where
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which they compare with the alternative of vaccination, which yields ω−ξ2.

The first possibility is that individuals who escaped infection in period

1 reject vaccination in period 2, thus avoiding the cost ξ2, and expect all

others to do likewise (ne2 = 0). If{
c(x02)− [f(x02)c′(x02)]/f ′(x02)

}
x02=x

0
2(n1,n

e
2=0, ξ1)

< ξ2, (4)

that expectation is indeed fulfilled under rational choices of distancing, and

there is a wholesale rejection of vaccination.

An alternative possibility is that ξ2 and n
e
2 ∈ (0, n − n1) are such that

agents are indifferent between vaccination and distancing, so that (4) holds,

instead, as an equality, with x02(n1, n
e
2;n, ξ1) > 0. Then, given ξ2, n

e
2 ∈

(0, n− n1) must satisfy

c(x02)− [f(x02)c′(x02)]/f ′(x02) = ξ2, (5)

which involves the interplay of vaccination and distancing decisions.14 That

is to say, given the conjecture in question, all individuals who escaped in-

fection in period 1 will be indifferent between vaccination, which yields the

fixed expected pay off ω − ξ2, and taking their chances with distancing in

period 2. For the outcome to be a mixed strategy equilibrium, all individuals

who escaped in period 1 must not only conjecture ne2 ∈ (0, n− n1), but also

choose to get vaccinated with probability ne2/(1−n1) given that conjecture.

Let x∗2(ξ2) satisfy (5) without reference to condition (3). In equilibrium,

x02(n1, n
e
2, ξ1) = x∗2(ξ2) (see Appendix 1 for the details). As ξ2 varies, then

ηcx(x
0
2) = c′(x02)x

0
2/c(x

0
2) and η

f
x(x

0
2) = f ′(x20)x

0
2/f(x

0
2) are the respective elasticities of

private cost and private benefit, in the form of a reduction in the probability of suffering

a symptomatic infection, with respect to social distancing.
14As ne2 increases, x

0
2(n1, n

e
2, ξ1) will decrease steadily (see Appendix 1), so that if ξ2 is

not too large, there is an ne2 ∈ (0, n− n1) such that x02(n1, ne2, ξ1) also satisfies (5).
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so, too, does the equilibrium pair (ne2, x
∗
2(ξ2)), with n

e
2 > 0 so long as ξ2 is

not so large that condition (4) holds.

The foregoing results are summarised as

Proposition 2 Suppose zero transmission does not arise from infections in

period 1.

(i) If condition (4) holds, universal rejection of vaccination is a Nash equi-

librium. If g satisfies condition (22) in Appendix 1, then it is the only Nash

equilibrium.

(ii) If the converse of condition (4) holds, ξ2 is suffi ciently small and (22)

holds, then there is a mixed strategy Nash equilibrium wherein the share of

those susceptible at the start of period 2 who choose vaccination is ne2/(1−

n1), where ne2 ∈ (0, n− n1) is such that x02 satisfies (5).

The burden of scientific evidence is that the expected cost of vaccination

is much less than that of relying on privately optimal distancing, so that

condition (4) is violated. The indifference condition (5) is quite realistic, for

it is common to observe unvaccinated sub-populations when vaccination is

voluntary. Where SARS-CoV-2 is concerned, this may not be due wholly to

people’s ignorance, or dismissal, of scientific knowledge. It could be based

on their social distancing behaviour in period 1, the resulting number of

infected people, n1, and conjectures about the vaccination share ne2.

2.2 Period 1

In view of proposition 1, the first question to be addressed is whether dis-

tancing decisions in period 1 yield zero transmission in period 2, and thus

make vaccination and distancing in that period superfluous. If X1 is such

that this would be the outcome, all individuals know that they will obtain

14



ω for sure in period 2, so that the structure reduces to a one-shot game.

Individual i’s f.o.c. is then f ′(xi1)g(X1, 0, 1)ξ1 + c′(xi1) = 0. Assuming

a symmetric equilibrium, let xj1 = x∗1(n, ξ1) ∀j, where x∗1(n, ξ1) satisfies

f ′(x∗1(n, ξ1))g(x
∗
1(n, ξ1), 0, 1)ξ1 + c′(x∗1(n, ξ1)) = 0. Now, in any symmetric

allocation xj1 = x∗1 ∀j, the law of large numbers yields

n1(x
∗
1) = pj1 = f(x∗1) · g(x∗1, 0, 1) ∀j. (6)

If n1(x∗1(n, ξ1)) ≥ n, then there is a subgame perfect Nash equilibrium

wherein xj1 = x∗1(n, ξ1) ∀j and there is neither distancing nor vaccination in

period 2. If, on the contrary, zero transmission does not thus ensue, then,

in virtue of proposition 1, it will not do so from voluntary vaccination in

period 2, unless the expected costs of vaccination are zero, in which event

all individuals can obtain ω in that period by choosing vaccination, thus

yielding n1(x∗1) + n2 = 1 > n. This argument establishes

Proposition 3 If n1(x∗1(n, ξ1)) ≥ n, then there is a subgame perfect Nash

equilibrium wherein zero transmission is attained as a result of distancing

decisions in period 1. If n1(x∗1(n, ξ1)) < n, then there is a subgame perfect

Nash equilibrium wherein zero transmission is attained through voluntary

vaccination in period 2 if and only if ξ2 = 0.

Remark. If the threshold is attained, n1(x∗1(n, ξ1)) is independent of ξ2. If

the threshold is not attained, recall that ξ2 > 0 is a necessary condition for

proposition 1 to hold.

If the threshold is not attained and ne2 > 0, all those who escaped infec-

tion in period 1 will obtain the pay off ω − ξ2 n period 2, being indifferent

between vaccination and distancing. Knowing this, all individuals obtain,

evaluated ex ante in period 1, the expected pay off ω− (1− p1(x∗1))ξ2 in the
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symmetric equilibrium in period 2, and the expected pay off

ω − p1(x∗1)ξ1 − c(x∗1) = ω − f(x∗1) · g(x∗1, 0, 1)ξ1 − c(x∗1)

in period 1. Note that the expected cost of vaccination ex ante is net of

the probability of getting infected in period 1, infection making vaccination

unnecessary. The resulting value of the individual preference functional Vi

is

Vi = (1 + β)ω − (p1ξ1 + c(x∗1))− β(1− p1(x∗1))ξ2 ∀i,

where β (≤ 1) is the discount factor. Suppose, in keeping with the evidence,

ξ1 > βξ2.

Proposition 4 If there exist

(i) an x∗1 such that f
′(x∗1)g(x

∗
1, 0, 1)(ξ1−βξ2)+c′(x∗1) = 0 and f(x∗1)g(x∗1, 0, 1) =

n1 < n, and

(ii) an ne2 ∈ (0, n − n1) that satisfies condition (3) when xj2 = x∗2(ξ2) and

the indifference condition (5),

then the allocation xj1 = x∗1 ∀j, ne2, xj2 = x∗2(ξ2) ∀j is a subgame perfect

Nash equilibrium, wherein all susceptible individuals at the start of period 2

choose vaccination with probability ne2/(1− n1).

Proof : see Appendix 1, which also addresses the question of uniqueness.

The condition f ′(x∗1)g(x
∗
1, 0, 1)(ξ1 − βξ2) + c′(x∗1) = 0 implies that, in

keeping with intuition, x∗1 is increasing in ξ1 and decreasing in ξ2; for dis-

tancing more in period 1 lowers the chances of infection in that period, but

increases the chances of entering the next without immunity, and thus hav-

ing to face the vaccination decision. If ξ2 increases, then so will n1, because

x1 decreases (see eq. (6)).
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2.3 The probability of transmission is always positive

It is quite possible that n ≥ 1, so that there is only individual immunity.

It is straightforward to show how, in a mixed strategy equilibrium, agents

respond to changes in that threshold leading up to the value 1. This is

accomplished by differentiating (10) totally, while noting that x∗1 and x
∗
2 are

independent of n when n1 < n. Some manipulation yields

n

ne2
· dn

e
2

dn
=
n1 + n

e
2

n
· a(1− n1 − n

e
2)x
∗
2 + 1

a(1− n)x∗2 + 1
.

The resulting (left-hand) expression at n = 1 reduces to:

n

ne2
· dn

e
2

dn
= (n1 + n

e
2)[a(1− n1 − ne2)x∗2 + 1].

In such configurations, therefore, the receding prospect of attaining zero

transmission encourages vaccination all the way to n1 = 1. Given the func-

tional forms in Section 2.4, it is seen from (8) and (9) below that changes

in n have no effect on the number of infections in period 1.

2.4 Quantitative Analysis

Specific functional forms are needed. Let c(x) = x2/2 and

pi2 =

(
1− n1 + n2

n

)
[(xi2 + 1)(aX2 + 1)]

−1 if n1+n2 < n; otherwise, pi2 = 0,

(7)

where a > 0 is a constant.15 In a symmetric, mixed strategy equilibrium,

x∗1, n1, x
∗
2, and n

e.
2 are then related by the following equation system. The

conditions of part (i) in proposition 4 specialise to

x∗1(x
∗
1 + 1)

2(ax∗1 + 1) = ξ1 − βξ2 (8)

15Observe that ηcx = 2 and |ηfx| = xit/(xit + 1), so that ηcx/|ηfx| can take any value in

(2,∞) and c(x)(1 + ηcx/|ηfx|) any value in [0,∞).
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and

n1 = [(x
∗
1 + 1)(ax

∗
1 + 1)]

−1 , (9)

respectively. Eq. (8) has a unique positive solution. If n1 < n, it is admis-

sible. Eq.(3) becomes

x∗2(x
∗
2 + 1)

2(a(1− n1 − ne2)x∗2 + 1) =
(
1− (n1 + n

e
2)

n

)
ξ1. (10)

Hence the indifference condition (5) reduces to

x∗2(1 + 3x
∗
2/2) = ξ2, (11)

which has the unique positive solution x∗2(ξ2) = [−1 + (6ξ2 + 1)1/2]/3. Eqs.

(8) and (10) can then be solved for x∗1 and n
e
2. Since ∂g/∂n2 = −[a(1 −

n)x∗2 + 1]/[n(ax
∗
2 + 1)

2] < 0, ne2 is unique. Finally, (9) yields n1.

Figures 2 and 3 report the sensitivity of the key variables to changes in

the expected cost parameters ξ1 and ξ2, respectively. We assume that the

expected cost of vaccination is at most one quarter, say, of the expected cost

of an infection. As baseline, let ξ1 = 3, ξ2 = 0.75, a = 2 and β = 1. Drawing

on Garcia-Garcia et al. (2022), choose the rather optimistic threshold value

n = 0.8. The level of distancing at date 1, x∗1, rises with the expected

cost of infection (see eq. (8)); as noted above, the latter has no effect on

distancing in period 2. The number of those infected, n1, falls, as seen from

(9), while the conjectured number receiving a jab, ne2, rises. The probability

that susceptible individuals will get a jab is around 0.35 and rises with ξ1.
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Figure 2: Effect of a rise in expected cost of infection
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Figure 3: Effect of a rise in expected cost of vaccines.

The responses to a change in the expected cost of vaccination, ξ2, run

in the opposite direction (see Figure 3). As this cost rises, people distance

less at date 1 and more at date 2. By increasing their chances of getting

infected at date 1, agents lower their chances of incurring the expected cost

of vaccination at date 2. Individuals expect fewer people to get vaccinated,

and this lowers the probability of vaccination, since the number of those

susceptible at date 2 falls only slightly as ξ2 rises. When ξ2 = 0.83, all those

not infected in period 1 reject vaccination.16

16 It is instructive note that the inverse relationship between ne2 and ξ2 holds for all ξ1

such that ξ1 > ax∗22 (x
∗
2 + 1)

2/n. This can be verified by differentiating (10) w.r.t. ξ2 and
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3 Imperfect Immunity

Naturally acquired immunity to certain diseases is perfect, but that rarely

holds for vaccination. Neither holds for SARS-CoV-2, even though previous

infection or vaccination greatly reduces the chances of subsequent symp-

tomatic infection.

Suppose there is a pool of infectious individuals at the start of period 2.

Imperfect immunity carries the implication that even if all individuals either

had been infected in period 1 or get vaccinated in period 2, each and every

one of them would have a strictly positive probability, quite possibly small,

of suffering symptomatic infection in period 2. The law of large numbers

implies that the number of infections in that period will be strictly positive

and in excess of the number in the said pool.17

We postulate that Covid will become endemic, and always actively present,

like influenza.18 Whether an individual gets infected in period 2 then de-

pends on three factors: the environment, as summarized by the aggregate

X2; the individual’s choice of distancing, xi2; and the individual’s immune

status, whether from infection in period 1, vaccination in period 2, or nei-

ther.

exploiting (8).
17This is certainly false for measles, small outbreaks of which occur in rich countries only

when unvaccinated children from poorer ones turn up in some numbers in a particular city,

wherein some of the locals had decided not to have their children vaccinated against the

disease. That occurred in Berlin in 2015, the children arriving from the Balkans. Those

who contract measles enjoy lifetime immunity.
18This is particularly true with the emergence of new variants such as delta and omicron,

against which vaccines are less effi cacious.
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3.1 Period 2

No one is completely immune, which means seropositive (S1), vaccinated

(S2) and susceptible (S3) individuals can all suffer symptomatic infection,

though their respective probabilities of doing so will differ. The probability

function in period 1 stays the same, but those for period 2 become

pi2 = p(k) [(xi2 + 1)(aX2 + 1)]
−1 , ∀i ∈ Sk, k = 1, 2, 3, (12)

where the parameter p(k) reflects the immune status of group k. Let p(1) =

p(2) < p(3).

The expected costs of infection also differ. In period 1, when all are

susceptible, let ξ1 = ξ1(0). In period 2, ξ1(1) = ξ1(2) < ξ1(3), where it is

possible that ξ1(3) differs from ξ1(0), since treatment may improve through

experience.

Proceeding as before, individuals’decisions in period 2 depend on their

immune status. Let c = x2i2/2. Then the f.o.c. for distancing is

p(k)ξ1(k) = xi2(xi2 + 1)
2(aX2 + 1), i ∈ Sk, k = 1, 2, 3. (13)

It is seen that the optimum now involves strictly positive distancing for any

X2, and that the optimal level is unique for each group. For those who choose

vaccination, there is the fixed cost ξ2. By assumption, p(1) = p(2) ≡ p̃ and

ξ1(1) = ξ1(2) = ξ̃1, so that x
0
i2(1) = x0i2(2). For those who decline to get

vaccinated, p(3) > p̃ and ξ1(3) > ξ̃1, but without the burden of the expected

cost ξ2. Thus, for any X2, members of S3 will distance more.

We focus on mixed strategy equilibria, though it should be noted that for

some constellations of parameters, there will be a wholesale rejection of vac-

cination. For others, in contrast to perfect immunity, wholesale acceptance

can be an equilibrium (see Appendix 2).
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In a symmetric equilibrium, X2 = (n1 + n2)x
0
2(2) + (1 − n1 − n2)x02(3).

Substituting into (13), we obtain two equations in x02(2) and x
0
2(3):

p(k)ξ1(k) = x02(k)(x
0
2(k)+1)

2[a((n1+n2)x
0
2(2)+(1−n1−n2)x02(3))+1], k = 2, 3.

(14)

Those not infected in period 1 will be indifferent between vaccination

and taking their chances in period 2. Proceeding as Section 2.1, and noting

(5), we obtain the corresponding indifference condition

x02(3)[1 + 3x
0
2(3)/2]− x02(2)[1 + 3x02(2)/2] = ξ2, (15)

which implies that x02(3) > x02(2). From (14),

x02(2)(x
0
2(2) + 1)

2

x02(3)(x
0
2(3) + 1)

2
=
p(2)ξ1(2)

p(3)ξ1(3)
≡ ρ, (16)

where the constant ρ is surely much smaller than 1, implying that x02(3)

greatly exceeds x02(2).
19 It also follows that x02(2) and x02(3) must move

together in response to changes in other variables. In particular, they are

increasing in ξ2 (see Appendix 2). Since the function c(xit) is strictly con-

vex, the marginal cost of social distancing rises much more steeply for the

unvaccinated, thus making vaccination relatively more attractive.

3.2 Period 1

At the start of period 1, i chooses xi1 so as to maximise

Vi = (1 + β)ω − pi1ξ1(0)− x2i1/2− β(x02(2))2/2− β(1− pi1)ξ2,

= {(1 + β)ω − β[(x02(2))2/2 + ξ2]} − pi1[ξ1(0)− βξ2]− x2i1/2, (17)
19Total differentiation also yields dx02(3)/dx

0
2(2) > 1 if and only if 1 + x02(3) + x02(3) >

3x02(2)x
0
2(3).
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where the expression in braces is parametric for i. The associated f.o.c. is

p(0)[ξ1(0)− βξ2] = xi1(xi1 + 1)
2(aX1 + 1), ∀i, (18)

where it is assumed, plausibly, that ξ1(0) > βξ2. In a symmetric equilibrium,

xi1 = x∗1 ∀i, so that

p(0)[ξ1(0)− βξ2] = x∗1(x
∗
1 + 1)

2(ax∗1 + 1), (19)

which has a unique positive solution. By the law of large numbers,

n1(x
∗
1) = p1(x

∗
1) = p(0)/[(x∗1 + 1)(ax

∗
1 + 1)]. (20)

As in Section 2, n1(x∗1) is decreasing in ξ1(0) and increasing in ξ2. This

argument establishes the counterpart of Proposition 4:

Proposition 5 Let x∗1 satisfy (19). If there is an n
e
2 = n2 ∈ (0, 1− n1(x∗1))

such that x02(1) = x02(2) and x
0
2(3) satisfy conditions (13) and (15), then the

allocation

xj1 = x∗1 ∀j, ne2, xj2 = x02(2)∀j ∈ S1 ∪ S2, xj2 = x02(3)∀j ∈ S3

is a subgame perfect Nash equilibrium, wherein all individuals lacking any

immunity at the start of period 2 elect to get vaccinated with probability

ne2/(1− n1(x∗1)).

In view of the argument at the close of Section 3.1, an increase in ξ2 may

induce an increase in ne2, despite always inducing an increase in n1(x
∗
1). The

numerical examples in Appendix 2 demonstrate this possibility.
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4 Non-Believers

Thus far, all agents are rational, possessing common prior beliefs. Now

suppose there is a group of Covid non-believers, S0, comprising the share λ

of the population. Thus persuaded, they neither practise social distancing

nor opt for a jab.20

To illustrate the effects of this group on the choices of rational agents,

we modify the probability functions in Section 2 as follows:

pi1 = f(xi1) · g[(1− λ)X1, 0, 1]

pi2 = f(xi2) · g[(1− λ)X2, n1 + n2, n] if n1 + n2 < n; otherwise, pi2 = 0.

whereby non-believers choose x01 = x02 = 0. We concentrate on mixed

strategy equilibria. Consider one such equilibrium well in the interior of the

subset of admissible parameter values in Section 2, wherein all agents are

rational (λ = 0). Suppose the group of non-believers is suffi ciently small to

ensure the existence of a like equilibrium in this changed setting.

If xj1 = x∗1 ∀j 6= i (i and all j rational), individual i’s f.o.c. is

f ′(xi1)g[(1− λ)x∗1, 0, 1](ξ1 − βξ2) + c′(xi1) ≤ 0, xi1 ≥ 0.

It follows at once that, in a symmetric allocation, rational individuals dis-

tance more in period 1 as the non-believers become more numerous. Let

n1(x
∗
1, λ) denote the size of the pool of all naturally immune individuals, n

r
1

that of those who are rational.
20There are also people who, for religious or other reasons, categorically reject vaccina-

tion, but not the array of measures called ‘distancing’. Their presence in the population

further complicates the analysis; for their choice of distancing will generally differ from

that of all rational individuals in period 1 and from that of rational individuals who decide

against vaccination in period 2. We do not pursue this extension here.
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The argument thus far establishes a modified form of proposition 4.

Proposition 6 Let non-believers comprise the fraction λ of the whole pop-

ulation. If there exist

(i) an x∗1 such that f
′(x∗1)g[(1−λ)x∗1, 0, 1](ξ1−βξ2)+c′(x∗1) = 0, an n1(x∗1, λ) <

n, and

(ii) an ne2 ∈ (0, n−n1) that satisfies condition (3) when xj2 = x∗2(ξ2) ∀j ∈ S3,

and the indifference condition (5), then the allocation

xj1 = xj2 = 0 ∀j ∈ S0, xj1 = x∗1 ∀j /∈ S0, ne2, xj2 = x∗2(ξ2) ∀j ∈ S3

is a subgame perfect Nash equilibrium, wherein all rational susceptible in-

dividuals at the start of period 2 elect to get vaccinated with probability

ne2/(1− nr1).

It is proved in Appendix 1 that, with the specific forms of c and pit in

Section 2.4,

n1(x
∗
1, λ) =

x∗1(1 + λx
∗
1)(x

∗
1 + 1)

ξ1 − βξ2
, (21)

where x∗1 satisfies the f.o.c.

x∗1(x
∗
1 + 1)

2[(a(1− λ)x∗1 + 1] = ξ1 − βξ2

and the contribution of rational individuals to that pool is

nr1 = (1− λ)[(x∗1 + 1)(a(1− λ)x∗1 + 1)]−1.

It follows from (21) that n1(x∗1, λ) is increasing in λ; for x
∗
1(1+λx

∗
1)(x

∗
1+1)

is increasing in x∗1 and x
∗
1 is increasing in λ. Total differentiation of the

f.o.c., with ξ1 − βξ2 held constant, yields the closed form

dx∗1
dλ

=
(x∗1)

2(x∗1 + 1)

1 + (1 + 3a)x∗1 + a(3− 2λ)(x∗1)2
> 0.

26



Yet although rational individuals distance more as the number of non-

believers increases, the direct effect of zero-distancing among the latter over-

whelms the defensive efforts of the former where n1(x∗1, λ) is concerned.

As for the behaviour of ne2, the findings in Section 2.4 rather point to an

ambiguous response to changes in λ (see Appendix 1 for the details).

The comparative statics results are summarised as follows.

Proposition 7 Under the conditions of proposition 6, an increase in the

proportion of non-believers in the population has the following effects.

(i) Rational individuals distance more in period 1.

(ii) The proportion of the population infected in period 1 increases.

(iii) The uptake of vaccination among susceptible rational individuals may

rise or fall.

5 Conclusions

This paper deals with a two-period setting in which individuals make wholly

voluntary, uncoordinated decisions about social distancing and vaccination,

where the latter carries the risk of side effects. Both actions affect the

prevalence of symptomatic infection.

There exist various subgame perfect Nash equilibria. If individual im-

munity is perfect and the zero transmission threshold is less than 1, then

zero transmission in the second period can arise from distancing decisions

in the first period. If it does not thus arise, it can never do so as a result

of vaccination at the start of the second. There can be a mixed strategy

equilibrium, wherein some of those who escaped infection in the first period

choose vaccination in the second, or even a wholesale rejection of vaccina-

tion, depending on the expected costs of infection and those of vaccination.
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These outcomes among rational agents also hold in the presence of a suffi -

ciently small group of Covid deniers. If individual immunity is imperfect,

all those not infected in the first period may indeed choose vaccination in

the second.

Lower perceived expected costs of vaccination induce steady movements

towards the state of zero transmission. If, in the limit, the expected cost of

vaccination were zero, then vaccination of all those who escaped infection

in period 1 would be a focal conjecture. A lump sum tax to cover both the

expected cost and a small net inducement for individuals to turn up for their

jab would then yield the state in question.

When rigorous enforcement of distancing and universal, mandatory vac-

cination are out of the question, there remains persuasion. An information

campaign whose tone is reasoned and encouraging, rather than hectoring

through a megaphone, may nudge the whole population towards substan-

tial immunity. This outcome is all the more likely to result when naturally

acquired immunity is duly recognised.
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Appendix 1

Full immunity: distancing and vaccination decisions in period 2

Claim: x02 is continuously differentiable in n
e
2; it is continuously decreasing

in ne2 if and only if

∂g/∂n+2 − x02 · ∂g/∂X2 < 0, (22)

where n+2 ≡ n1 + n2. Let g be such that condition (22) holds everywhere.

That is to say, a marginal increase in the share of all immune individuals

reduces g by an amount that outweighs the increase induced by the associ-

ated changes in distancing.21 This holds when those who reject vaccination

choose suffi ciently limited distancing or |∂g/∂X2| is suffi ciently small.

Denote the partial derivatives of g by gX2 and gn+2 , respectively. Differ-

entiating (3) totally, rearranging and noting that n1 is fixed in period 2, we

obtain
dx02
dne2

=
−x02gX2 + gn+2

(f ′′g · ξ1 + c′′) + (1− n1 − ne2)gX2f ′ · ξ1
,

where the assumptions on f, c and g include f ′ < 0, f ′′ > 0, c′′ > 0, gX2 < 0

and gn+2 < 0. Thus, the denominator is positive, so that x02 decreases or

increases as ne2 increases according as −x02gX2 + gn+2 is negative or positive.

The assumptions on c, f and g are such that both the numerator and the

denominator are continuous, and since the denominator nowhere vanishes,

x02 decreases or increases continuously as n
e
2 increases.

Claim: given c and f , distancing in period 2 depends only on ξ2.

By assumption, c(0) = c′(0) = 0, c(x2) increases without bound as x2 in-

creases, and −f/f ′ > 0. Hence, there exists an x2 > 0 such that, for any

21 In elasticity form, this condition can be expressed as η(g)
n+2
−[n+2 /(1−n+2 )]η(g)X2 < 0.
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ξ2 > 0,

c(x2)− [f(x2)c′(x2)]/f ′(x2) = ξ2.

Denote that value by x∗2(ξ2), which is increasing in ξ2 and independent of

ξ1, as well as of n, n1 and ne2 for all n
e
2 ∈ (0, n − n1), the latter being

arguments only of g. Since (5) holds, x∗2(ξ2) = x02(n1, n
e
2, ξ1) and c(x

∗
2(ξ2))+

p2(x
∗
2(ξ2))ξ1 = ξ2.

Vaccination: expected costs and acceptance

Suppose the threshold is not attained and that ξ2 is close to zero, so that

condition (4) does not hold. Then considerations of continuity suggest that

there exists a subgame perfect Nash equilibrium wherein n1 < n and n1+n2

is smaller than, but close to, n. In such an equilibrium, all individuals know

that if they get infected in period 1, they will obtain ω for sure in period 2,

whereas if they escape, they will obtain the expected pay off ω − ξ2. If ξ2
is suffi ciently large, however, condition (4) will hold. This indicates that as

the expected cost ξ2 increases steadily from zero, it will induce the level of

voluntary vaccinations to fall steadily, eventually to zero, with accompanying

adjustments to the level of distancing in period 2.

Proof of proposition 4

In view of

Vi = (1 + β)ω − (pi1ξ1 + c(xi1))− β(1− pi1(xi1))ξ2,

let x0i1(x
∗
1)minimize the (convex) function f(xi1)·g(x∗1, 0, 1)(ξ1−βξ2)+c(xi1).

Then x0i1(x
∗
1) satisfies

f ′(xi1)g(x
∗
1, 0, 1)(ξ1 − βξ2) + c′(xi1) ≤ 0, xi1 ≥ 0. (23)
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It is seen that x0i1(x
∗
1) is unique and positive, and that it depends only on

the difference ξ1 − βξ2. Individual i will deviate from the hypothesized

symmetric equilibrium in period 1 if and only if

p0i1(x
∗
1)(ξ1 − βξ2) + c(x0i1(x∗1)) < p∗1(ξ1 − βξ2) + c(x∗1). (24)

Observing that, in the limit, condition (24) is violated when the strict equal-

ity

p0i1(x
∗
1)(ξ1 − βξ2) + c(x0i1(x∗1)) = p∗1(ξ1 − βξ2) + c(x∗1),

holds, i.e., no deviation, we have established the conditions in part (i).

If ξ1 ≤ βξ2, i will choose xi1 = 0, as will everyone else, so that n1 = 1,

contradicting the conjecture ne2 ∈ (0, n). This obvious result is an instance

of the first part of proposition 3.

On the uniqueness of (symmetric) equilibrium, condition (23) becomes

f ′(x∗1)g(x
∗
1, 0, 1)(ξ1 − βξ2) + c′(x∗1) = 0.

This equation has a unique positive solution, and hence the pair (x∗1, n1(x
∗
1))

is unique. If n1(x∗1) < n, the solution is admissible. Turning to x∗2(ξ2),

this is always unique. Given that value, n2 is unique if the function g is

monotonically decreasing in n2, whereby g is positive when n2 = 0 and g

vanishes when n1 + n2 = n.

Imperfect immunity: vaccination decisions

Suppose n2 = 0. Then X2 = n1x
0
2(2;n2 = 0) + (1− n1)x02(3;n2 = 0), where

the levels of distancing will increase with 1−n1, the size of the pool of those

lacking any immunity. If

x02(2;n1, n
e
2 = 0)[1 + 3x

0
2(2;n1, n

e
2 = 0)/2] < ξ2,
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all will reject vaccination, now with members of S1 distancing somewhat in

view of their imperfect immunity.

At the other extreme, suppose all individuals but i have some immunity,

i.e., n1 + n2 = 1, individuals having no measure. Then, in a symmetric

equilibrium, X2 = x02(2;n1 + n2 = 1). Substituting into (13), we obtain

p(2)ξ1(2) = x0j2(x
0
j2 + 1)

2(ax02(2) + 1), ∀j 6= i.

Imposing symmetry yields a quartic, which possesses a positive solution

x02(2;n1 + n2 = 1). Now suppose i decides against vaccination. From (13),

we obtain the cubic

xi2(xi2 + 1)
2 − p(3)ξ1(3)/[ax02(2;n1 + n2 = 1) + 1] = 0.

If the associated positive root, x0i2(3), is such that

x0i2(3)[1+3x
0
i2(3)/2]−x02(2;n1+n2 = 1)[1+3x02(n1+n2 = 1)/2] < ξ2, (25)

then i will deviate, and we will have a result analogous to proposition 1,

albeit in a weaker form, whereby ξ2 must be suffi ciently large. Not all those

who escaped infection in period 1 get vaccinated, but the possibility that a

mixed strategy equilibrium exists is not ruled out when the inequality holds.

Then again, it is possible that the setting is one wherein (25) is violated, so

that i does not deviate and all susceptible individuals choose vaccination.

Yet this does not also rule out the existence of an equilibrium of the kind in

proposition 5.

Imperfect immunity: the effect of an increase in ξ2 on n+2

Differentiating (15) and (16) totally, and rearranging, we obtain

dξ2 = (3x
0
2(3) + 1)

[
1− x02(2)(x

0
2(2) + 1)

x02(3)(x
0
2(3) + 1)

]
dx02(3),
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so that x02(3), and hence also x
0
2(2), is increasing in ξ2. Writing X0

2 as

[x02(2)− x02(3)]n+2 + x02(3), it is seen from (14) that an increase in x02(3) will

induce an increase in n+2 , unless there is an accompanying increase in the

difference x02(3) − x02(2) large enough to offset the increase in all the terms

involving x02(3) alone. Such an increase in x
0
2(3) − x02(2) would have to be

large indeed.

Non-believers

Proceeding as in Section 2, it is readily shown that those rational individuals

who decide against vaccination choose the same distancing as they would in

the absence of the non-believers. For their alternative is the fixed expected

cost ξ2, and this tethers their behaviour to the indifference condition (5),

which, involving only ξ2, is independent of λ. This is the first result.

What does change is the distancing of rational individuals in period

1, together with the numbers getting infected and a jab. Since the non-

believers do not distance, the fraction p01 = [a(1−λ)x∗1+1]−1 of this group

get infected in period 1 and so contribute λ[a(1− λ)x∗1+1]−1 to the pool of

naturally immune individuals in period 2. The corresponding contribution

of the rational individuals is

nr1 = (1− λ)[(x∗1 + 1)(a(1− λ)x∗1 + 1)]−1,

so that the the size of the whole pool of naturally immune individuals in

period 2 is

n1(x
∗
1, λ) =

1 + λx∗1
(x∗1 + 1)[(a(1− λ)x∗1 + 1]

.

To show why a change in λ has an ambiguous effect on ne2, note that

condition (10) is changed only by the introduction of the term (1 − λ) as
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a multiplicand of a. Recall that, after vaccination decisions, the pool of

immune individuals has size n+2 = n1 + ne2 < n. Differentiating totally,

holding ξ1 and ξ2 constant, yields

dn+2
dλ

=
anx∗2φ2 · (1− n+2 )
ξ1 − (1− λ)anx∗2φ2

,

where φ2 ≡ x∗i2(x∗i2+1)2. Hence, n+2 is increasing or decreasing in λ according

as ξ1 exceeds or falls short of (1 − λ)anx∗2φ2.
22 Since x∗2(ξ2) and φ2(ξ2)

depend only on ξ2, the presence of non-believers makes it more likely that

the size of the said pool is increasing in λ, albeit at a diminishing rate.

Now, n1(ξ1, λ) is increasing in λ. Hence, if n+2 is decreasing therein,

then ne2 must be likewise. If, on the contrary, n
+
2 is increasing in λ, then the

behaviour of ne2 is ambiguous. Noting that n1(ξ1, λ) depends on x
∗
1, we have

dn+2
dλ

=
dn1
dx∗1
· dx

∗
1

dλ
+
dne2
dλ

.

Differentiating (21), we obtain

dne2
dλ

=
anx∗2φ2 · (1− n+2 )
ξ1 − (1− λ)anx∗2φ2

−(x
∗
1 + 1)(x

∗
1)
2 + [(2x∗1 + 1) + x

∗
1(2 + 3x

∗
1)λ]

ξ1 − βξ2
·dx
∗
1

dλ
,

where dx∗1/dλ has been derived above, as a rational function of x
∗
1 and λ.

This demonstrates the said ambiguity: a larger pool of naturally immune

individuals in period 2 may, or may not, make vaccination less attractive to

rational susceptible individuals.

Appendix 2

Imperfect immunity: quantitative analysis

The endogenous variables x∗1, x
∗
2(1), x

∗
2(2), x

∗
2(3), n1 and n

e.
2 are related by

x∗1(x
∗
1 + 1)(ax

∗
1 + 1) = p(0)ξ1(0)− βξ2, (26)

22When they are equal, the derivative is undefined.
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x∗2(1)(x
∗
2(1)+1)

2[a{n1x2(1)+ne2x2(2)+(1−n1−ne2)x2(3)]}+1] = p(1)ξ1(1),

(27)

x∗2(2)(x
∗
2(2)+1)

2[a{n1x2(1)+ne2x2(2)+(1−n1−ne2)x2(3)]}+1] = p(2)ξ1(2),

(28)

x∗2(3)(x
∗
2(3)+1)

2[a{n1x2(1)+ne2x2(2)+(1−n1−ne2)x2(3)]}+1] = p(3)ξ1(3),

(29)

x∗2(2)[1 + 3x
∗
2(2)/2] + ξ2 = x∗2(3)[1 + 3x

∗
2(3)/2], (30)

n1 = p(0) [(x∗1 + 1)(ax
∗
1 + 1)]

−1 . (31)

As in section 2.4, we perform a sensitivity analysis with respect to

changes in the expected cost of an infection, which depends on immune

status, and the expected cost of vaccination. We compute a baseline equi-

librium for the following constellation, which conforms to that in Section

2.3:

ξ1(0) = 3, ξ2 = 0.75, ξ1(1) = ξ1(2) = 0.3, ξ1(3) = 3, p(0) = 0.8, p(1) =

p(2) = 0.4, p(3) = 0.5 and a = 2. The allocation is:

x∗1 = 0.45028, n
∗
1 = 0.29024, n

e
2 = 0.38298, x

0
2(2) = 0.07361, x

0
2(3) = 0.48251.

Note that full vaccination with ne2 = 1−n∗1 = 1− 0.29024 is also an equilib-

rium, whereby all individuals choose the yet smaller x02 = 0.0581.

The rationale for choosing these parameter values is as follows. At date

1, when all individuals lack any immunity, the expected cost of an infection,

ξ1(0), is high. If infected in period 1 or vaccinated at date 2, the said

cost in period 2 is considerably lower. The probability parameters p(k) also

preserve that ordering. We assume that the expected cost of vaccination is

at most one eighth of the expected cost of an infection.

The results for an increase in ξ1(0) of up to 5% from its baseline level

are as follows.. As in the case of herd immunity, individuals distance more
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in period 1, thus lowering n1. Unlike the herd immunity case, however,

distancing in period 2 depends on ξ1(0); for unlike (5), the indifference

condition (15) is not anchored, there being now two endogenous variables in

play, although the changes are quantitatively negligible for the 5% variation

in ξ1(0). The fall in n1 is accompanied by a rise in n
e
2, and the probability

that susceptible individuals will get a jab also rises.

The results for an increase in the expected cost of vaccination are as

follows. As in the herd immunity case, individuals distance less in period

1 and more in period 2, wherein the response of group S3 differs sharply

from that of groups S1 and S2. These responses are jointly determined

with ne2. Since the response of x
∗
2(3) is much stronger than than that of

x∗2(1) = x∗2(2), this may raise the cost of social distancing for unvaccinated

individuals so much —due to the strict convexity of the cost function —that

more susceptible individuals opt for vaccination, thus preserving indifference

in equilibrium.
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